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Abstract

The generation of recognition programs by hand is a time-consuming, labor-intensive task that
typically results in a special purpose program for the recognition of a single object or a small set
of objects. Recent work in automatic code generation has demonstrated the feasibility of auto-
matically generating object recognition programs from CAD-based descriptions of objects. Many
of the programs which perform automatic code generation employ a common paradigm of utiliz-
ing explicit object and sensor models to predict object appearances; we refer to the paradigm as

" • appearance-based vision, and refer to the programs as vision algorithm compilers (VACs). A
CAD-like object model augmented with sensor-specific information like color and reflectance, in
conjunction with a sensor model, provides all the information needed to predict the appearance
of an object under any specified set of viewing conditions. Appearances, characterized in terms
of feature values, can be predicted in two ways: analytically, or synthetically. In relatively simple
domains, feature values can be analytically determined from model ipformation. However, in
complex domains, the analytic prediction method is impractical. An alternative method for
appearance prediction is to use an appearance simulator to generate synthetic images of objects
which can then be processed to extract feature values. In this paper, we discuss the paradigm of
appearance-based vision and present in detail two specific VACs: one that computes feature val-
ues analytically, and a second that utilizes an appearance simulator to synthesize sample images.
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1 Introduction

Thb geernam of object recognition programs by hand is a lme-csm abor-inive pce that typically
results in a special ppm program for die recognition of a single object or a small set of objects. 1he rean for this
lies in the dmip mnahdolog, an de basis of a representative set of sample inmgs, the desi Selects a sO f
image featnres md specifies the procedure to be used in matching ime featues to object features. Fature selection
requires appication of many different operators to the sample images in order to determine the ben feate set Opti.
mization of both feature extraction opmto and die malchin procedure requires "tweaking" of pamen though
exMsivC expermention The entre proces requires a highly skilled and movaed deione While the result is
often an efficient, robust solution to the problem, die overall cos is so high as to be prhibitive for many applications

Recently, driven in pat by an effort to make computer vision systems mome econonially feasible, research has been
conducted towards the ga of automatically generating recognition code fim a CAD-based description of an object.
Mos current industri ps are diPed and maIuftured using omputEr-aided tools, so CAD descriptions exist
for mos parts; automatic gMeraIn of recogniion code fom the same model infonation used for design and n
ufacture would be an efient, cost-effective approach. A number of programs for automatic generation of object rec-
ognition code have been written, and many of these programs employ a common paadigm in which eplc object
and sensor models me used to predict object appearances. We refer to de padignm as appearance-band von, and
programs which generate object recognati programs a called vision algorilm complers, or VACs.

Appearance-based vision represents an exiension to the familiar paradigm of model-msed vision. Model-based
vision defines an execution-time methodology of matching observed image features to model features, but does not
address the issue of defining a medodology for selecting either features or machin procedures. Appearance-based
vii systems employ model-blse marchi during the execution-time. recognition plse6 but also employ a charac-
teristic methodology during the off-lie conplation phase, during which features am selected and processig strate-
gies determined.

In principle, a CAD-like object model, augmemed with sensor-specific information like surface color, roughness, and
reflectance, can be used in conjunction with a sensor model to predict the appearance of the object uinder any speci-
fd set of viewing conditions. Fr example, knowing the color and reflectance of a polygona pawh permits a com-
pleft determination of its variation in appearance with respect to a video camera and a fixed light source VACs con
predict object appernc in two different ways: analytically, or synthetically.

In relatively simple domains, feature values can be analytically determined from model information. For example, the
set of visible edges of a polyhedron with lambenian surfaces is a -aightforward computatdon. Similarly, the coilec-
tion of visible surfaces with respect to a range sensor can be easily computed. As objects and their properties grow in
compl=ity, however, effects such as self-shadowing and inter-reflection become more imporant, but am ditficult to
nmcorporae into an amelysis. Analytic prediction of appearances is therefore impratical for some domains.

An Alternative to analytic prediction of appeamnces is the use of an appearance simula An appearance simulator
generates synthetic images of objects unde specific viewing conditions, with respect to a given senso. An appear-
ane simulator can be used to genera e a representative collection of sample imags, which can then be processed and
amlyzed to extract the feature values that charactenize object appearances. Thus, a VAC utilizing an appearance sim-
ulator is a computtional implemtion of teradidonal hand-generio appm ac to building object recognition
systems.

In this paper, we discuss the poadigm of apparnce-based vision. In the next section we review tie s-of-the-a t
in appearance-based vision and the aummadic generation of object recognition programs. In the coume of the review,
the definn characteristics of appearance-bas vision systems will be noted. Following the review, we will present
in detail two VACs which typify ,Parance-based systems. In section 3, we prent a VAC dot employs analytic
prediction of ap P oncrs and the advantages and limitations of this approach am discussed. Then in section 4, we
present a VAC that utilizes an apepmce simulator. A brief summary concludes the Fper.
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2 The Paradigm of Appearance-Based Vision

The history of wrmput= visio research has largely been a tdy in making viam systems wo&k Lodte attention bas
been pai to the mnad of how to design uid build application sysem. For examnple, the dominant paradigm in com-
puter vison is that of niodel-baed vision. Briefly, do. model-based pradigm can be charcteized as hpothesize-
pmedct-verfy. given a collection of image featues hypotesize a mmac ofa = ug. feaw=r to a model femme;e use
the hypothesize mmhe to predict die image locations of othe model feamrerify~ the predictions and update the
hypothesis The pardigm does not specify how to seect the femmues to use or how to perform the matchiing. The par-
adfigm defines an aprach to examutIon-time processing, rtheur duan an approaich to system building.

-. Typically, a model-based vision system is built by band through a tm~imig dritnie xeieWpo
cess. The designer specfies a task scenario and obtains mnpe images. Thimagmoes arc repeatedly processed using a
variety of operators until the designer has selected a set of (ema that -du is adequate for the ta*-. The designe then
determines appropriat values to characterize. the fetues, implements a matching procedure, mid expeFimntal
"tuns" the procedure to perform optimally. The resulting prpam infe a ==*eeml efficient and competent for
the intended application, but are diflicult to extend or modify. Moireover, every model-based system takes about the
sme amount of effort to develop.

Because every computer vision systemt is essentially a custom solution to a spcfcproblem, a typical computer
vision system is expensive to develop and *nsta, and is capabe of reognizing only a single part or a smiall number
of parts under very special conditons Modifications to existing s"m we difit to make, and the cost, to develop
a new systm is as high as that of the first system. Clearly this is mn asimccepueabl *tAtdon For compute Vision, Sys-
tems to be practical, they must be cost-effective. This meam, uang othe things, doat a compute visio system must
be economical to develop, install, mnd modify.

Appearance-based vision adessthe problem of building corn-effective compute visio Systems; it specifies a
methodology for the automnatic generation of object recognition puepafhl. A4ppaauic -buwed vision is an extension
of the model-based paradigm that formlians and automats the design V nums. Appeaance-bed vision can be
characterized as an automated process of analyzing the appwanmsces of objects undler specified observation condi-
tions, followed by the automatic: geation of model-based jet eognitiom opunsbasd on the preceding anal-
ysis. An appearance-based system is called a vision algritm compilet~ or VAC

The appearance of an object is a function of both dhe pronp-ries of the objectad idoh poprties of the senor system
as well. Object models must be mote sphisicated than conventional CAD models, which only represenit object
geometry. Models for apernebsdvision must include any Winmtion that contributs to the, appearance of an
object with respect to aseusor. For example, 3D geometry is necessary to predict apparent shape, but must be mug-
mented with information about surface roughness, reflecsmnce tronuinittnce, and colac Since the appearance of an
object varies with respect to the senor, aeFzwoa models must also be specified. A mewis model mugt include informa-
tion about the relative geometry of the illuninant and detector s well as infoxrmion about the fesares detectable
by the senr.

One characteristic of app ene-based vision is that both objects and sesoam explicidly modeled, and therefore
exchangeable. Hence, a given VAC can generate object recognition code for many differen objects using the amne
sensor model. or the set of objects con be fixed and the sensor models varied. Appearance-based system embody an
abstract pinciple of appearance prediction based on the one of accurate models.

The tsk of object recognition is composed of two stubiauk objec Mdicaloa, in which objects in the scenie are
identified, and object localizadon, in which the exact Pose (position and oriesation) of an identified object is com-
puted A given object recognition task may conis of eier or bob th m md VACS have been constructed ID
solve all the different combinations of identification and localisiul.

A VAC incorporatesatwo stage approachto object reconiin. The firs stag is executed off-line and consists of
performing analysis of predicted object appearuce and t geneWrao of object recognition code. The second- stage
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is executed on-line, and cosists of applying the previously emed code to input imaps. The first stage is ece
only once for a given objet rcogtion auk, and can be relatively expensive. The sond sae is executed many
times, and must be both fast and cost-effective. The high ca of the ra stmae is amortized over a lap number of
executions of die ewond stage.

During the firm off-line sue of processing. the aearances of the object am predicted over the expected range of
viewpoints. The predicted appewances ae analyzed to determine the set a! features d at e useful for recognition.
Frequendy, identfication and localization ae performed mot eciently af diffina feature sets. Once the feature
seat is determined, reptentative values for the fietures we demied sad compiled ilo a recognition strategy.

The second, on-line stage of an appesrance-bised system is nothing m o a the ru-time execution of the ge=-
ated strategy. Since them ae many differmt outatioal strgegies, the on-lin sta varies considerably between
systems. The important principle is that extensive off-line analysis can be umed to make the on-line stag as efficient,
robust, and cost-effective as possible.

In the next subsection, we present an historical overview of research an apg;e -based vision. Then, building on
the historical perspective, we enumerate and elaborate on the commonales between the systems; it is this set of
common characteristics that define the paradigim of in vision.

2.1 Historical Perspective

Goad [91 presented an early version of a VAC. He noted t te computatioaal activity an application vision sys-
tem could be split up into two staget an analysis sta, in which uMful infomaion abou tbe task can be compiled
and an execution stage in which the compiled information is utilized to peFiomn objec recogniton. Moreover, the
compilation stage is performed off-line only once, at comiderable computatioal expeme while the execution stage
is executed on-line many times, and should be optimized to be as rapid as possible. The computational expense of the
off-line stage is then offset by the savings nalized by the repesed execution of the optimized on-line stage.

In Goad's system, an object is described by a list of edges and a et of visibility conditions for each edge. Visibility is
determined by checking visibility at a repsentaive number of viewpoints ohained by tessellating the viewing
sphere. Object recognition is performed by a process of iteratively matching object and image edges unil either a sat-
isfactory match is found, or the algorithm fails. The sequence of matchitgs is compiled during the off-line analysis
phase. Goad's system was not completely automatic, howem Gad selected edges as the features to be used for rec-
ognition, and the order of edge matching was specified by land.

The 3DPO system of Bolles and Horaud [41 was built with the intended gol of using off-line analysis to produce the
fastest, most efficient on-line object recognition propam possible. 3DFO utilized the local-feature-focus method, in
which a prominent focus feature is initially identifed, and then seconday features predicted from the focus feature
are used to fine-tune the localization result. The system wa no fully automatic. as the focus features and secondary
features were chosen by hand.

Ikeuchi and Kanade (141, [16] firm pointed out the importance of modeling smson as well as objects in orde to Pre-
dict appearances, and noted tha die feaues that am useful for recognition depend on the senso being used. Their
system, which will be elabonad on in s 3 pdlict object sp em ,ni at a epesentative set of viewpoints
obtained by tesselting the viewing pee. The q u a groued into equivalence clases with respect o
visible featms; the equivalence classes me called alpecu. A recognitio smuegy is generated from the aspects and
their predicted feature values, and i represented as an stpaon am Eah interpretationi tree specifies the
sequence of operations required to precisely localize a object. TM seqmce of operatio is broken up into two
pets: the fis pat classifies an input imap into a ismoe of on of the aspects, while the second pot determines
the precise pose (positon and orientation) of the object witin the specified aspect.

Hansen and Henderson [101 demonstrated a sye dt analyzed 3D geometric poper of objects and generated a
recognition sraegy. The system was developed to make ue of a range sensor for recogniton. The system examines
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object appearances a a reprementive set of viewpoints obtained by tesselating te viewing - . Geometric fea-
to= a each viewpointare exam d ad the properties of robustness, complemm, consistency, cos ad uiqe-
ne me evalumed i order to select a complete and consistent set of featurm For each mode, a ategy Uee is

constructed, which describes the search stratgy rued to recognize and localize objects in a scene. Each strategy tre
first uses the MnW9 set of features to identify the object and apect, u secondary fcatures to corroborate the
aspect identificatio, and then to find the exact pose.

The system of Arrow and Aggrwal [I was designed to be capable of selecting the proper sensor for a given task.
Starting with a CAD model of an object, the system builds up a tree in which the root node represents the object, and
the leaves represent featM (whee fatures am dependent upon the sensw selected), and a path from the root to a
leaf passes through nodes representing increasing specificity. For example, starting at the root, a path coud lead to a
node representing the sen= popty (shape, colo, reflectance,-), then to a feature class node (surface, bound-
ary,...), and so on down to a leaf node that repreents a particular fature of the object. Each arc in the tree is weighted
by a "reward potentiar that represents the likely pin from uaversing da link. At run time, the system traverses the
tree from the root to the leaves, choosing the branch with the highest weight at each level, and bacmacidng when
necessary.

The PREMIO system of Camps, et al [5] predicts object appeaances under various conditions of lighting, viewpoint,
sensor, and image processing operatos. Unlike other systems, PREMIO also evaluates the utility of each feature by
analyzing the detectability. reliability, and accuracy. The predictions ae then used by a probabilistic matching algo-
rithm that performs the on-line p-rcess of identification and localizatio

The BONSAI system of Flynn and Jain 71 identifies and localizes 3D objects in range images by comparing rela-
tional graphs extracted from CAD models to relational graphs constructae from rnge imag segmentation. The sys-
tem constructs the relational graphs off-line uing two techniques: M viw-independent features ae calculated
directly from a CAD model; second, synthetic images are constructed for a representative set of viewpoints obtained
by tessellating the viewing sphelr, and the predicted areas of patches am determined and stored as an attribute of the
appropriate relatioual graph node. During the on-line recognition phase, an interprema ion tree i constructed which
represents all possible matchings of t graph constructed f3om a ran image, and the sred model graph. Recogn-
tion is performed by heuristic search of the interpretation tree.

Sato, et al [201 demonstrated a system for recognition of specular objects. This system will be discussed mare com-
pletely in section 4. During an off-line phase, the system generates synthetic images from a representative set of
viewpoints. Specuitics am extracted from each image, and the image ae goped into aspects according to shared
specularities, and each specularity is evaluted in terms of its detectability and reliability. A defomable template is
also prepared for each aspect. At execution time, an input image is classified into a few possible aspects using a con-
tinuous classification procedure based on Dempster-Shafer theory. Find verificaton and localization is performed
using deformnble template matching.

2.2 The Common Threads

After reviewing the different appearance-based systems that have been constructed, it is useful to go back and point
out the common processing steps.

2.2.1 Two Phases of Processing

Each of the systems discussed employ two distinct phases of processing. The first phase, variously called of-ine,
compladon, or analysts, cnim of anlyzing object appearances, and construtng recognition ratees. The sec-
ond pls called on- , run-me, or eanuion, consists of applying the stmegies geated in the first plase to an
actual recopition task. In general, computational efficiency is not a coancern in the first phmse, since it does not
diectly affect the actual me or effort renuied to perfom object recognition, and the cot i only incurred once. In
conrast, the second phase is expected to execute many times as part of an application, and consequently mat be eff-
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cieat. In effect, tie time spent during suategy genation cm be mnortized ova the nmte of ocutions of the
resultant strategy.

2.2.2 Explicit Object and Sensor Models

Any object recognition system mu match the appearance of., object with respect to some sensw to a model of the
object. Consquendy, to autmaically genera a program for obje recognition, it is necessary to predict and ana-
lyze object appearancs Objects appear differently to dfemu sensms, so in order to pedict object apperances sen.
sors must be modeled as well. An ppemnce-baed system therefore includes both object and seno models

The early appearance-based systems only made use of explicit object models and utilized implicit sensor models,
although the need for diffeent types of models to reVr-sent different types of detectable features was acknowdged.
All recent systems have emphasized the fact that appeamce depends upon the sesor and include explicit models of
both objects and sensors. Models may be exchanged so that the sane VAC co generate object recognition programs
for a variety of objects and sensors.

2.2.3 Appearance Prediction and Analysis

In general. ther are two aprace to predicting object aS e analytic and synthetic. The analytic approach
uses the information stored in object and sensor models to mnlytically predict the appearance of an object from vari-
ous viewpoints. Alternatively, it is possible to generate images of objects under specific sensor conditions and analyze
the synthetic images. Both techniques have advantages and disadvantages dat ae discussed more completely in the
next two sections.

The appearance of an object varies with respect to the ssor used. The qapemace of an object with respect to a sen-
sor is characterized by means of the features that can be extactd from te senso image. Hmce, each sensor model
includes a feature set, and a collection of ima prcesing pe that a ued to er the features.

The appearance of an object also varies with respect to the relative geometry between senor and object, which cn be
referred to as the viewpoint. Potentially, there ae six depees of fSeedom in viewpoint, each of which spans an infinit
number of parameter values. Clearly, exhadu ve compuoidon of all p appearanes is impossible. b mamke the
set of possible appearances manageable, similar appearances e gooped ito set called aspects. Formally, an aspect
is a class of topologically equivalent views of an object [171. lowever., since different sensors detect different fea-
tures. the formal definition of an aspect is usually rekaed to be a class of appearances that we equivalent with respect
to a feature SeL

A substantial amount of work has been performed on deriving methods for analytically determining the collection of
aspects of an object. For example, Plaminp and Dyer [191 cm tn the exact set of aspects for polybedr under
either orthographic projection or perspective projection, using the definitio of sects as topologically equivalent
views. Kriegman and Po(ce [181 compute the exact set of aspects for slids of rvoludon under orthographic projec-
tion, again using the definition of aspects a topologically equivalent views. Chen and Freeman [6] deemine the
exact aspects for quadric-surfaced solids under perspective pojsion, wher cm ame views with isomorphic line-
junction graphs.

An alenative to the exact analytic computation of aspects is the ezh wdur appoac, in which viewpoints ae sam-
pled uniformly thrOughouthe Space of possUe viewpoits, and then similar viewpoints me groped together. An
approach of this sort was used by kech. and Kanad [16]. 11 r enad Headerson [10], Flynm and Jain [7, ad Sato,
et al (201. In each o these systems, the space of posaiA viewpoims is uniformly tessellated, ad the object appear-
ance is predicted fi each viewpoint corre nding r ft m m of a teasel. The fidelity of the smpling can be
increased by subdividing each tesl. This app ah is man Vnal than th analytic approch, since the sm proce-
dure can be used independently of the sensor or feature set.
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2.2.4 Generation of a Recognition Strategy

The result of the off-limne compilaio phase of an appence-bused system is a stamey for object recognition. The
stwagy is ofte npvenmtl in the frm of a tme that zprsnts ie sequem of opazons to penform at each step of
the recogntion process. Since the geneation of a su gy is perforned off-line, it is possible to perform relatively
expensive optiainuin.

There are many different conputational approaches that can be empoyed for object rcognition. Suetems. et al [21 a
a recemt srvey of the range of approahs A VAC can be comncted for may given approach. Cmsequently, there is
no standard form for the mcognitom srategy output by a VAC; alU that can be said is that the suategy consists of exe-
cutable code.

The strategy genemted on the basis of analysis of predicted appearances is repeatedly executed in an application.
Since the strategy is executed repeatedly, optimizations performed in the off-line phase are essentilly amortized over
the many on-line executions.



3 A VAC Utilizing Analytic Feature Prediction

The VAC discussed in this section was designed to genate an object locazation program fr a bin-picking task and
was initially presented in [141, at which time the system was not fully auomatic Further research has led to complete
automation of program genmation [15, as well as optimization of the resulting code [12]. This section will present
the complete system.The inputa to de VAC conist of an object model, speciffyig gometic and potometric chaac-
teristics of the object, and a sensor model, specifying do seor chactisti necesmry for predicting object
appearances and feature variations. The output consists of a mcgnition maegy in dfe form of an interprttion e.

A localization task is solved in two phases, as is characteristic of qpemance-basd systems. In te first, off-line
phase, the object and sensor models we used to predict object appemancue aad the variation in detectable features.
The result of the first phase is a recognition program for the given task. Th second, on-line phase consists of apply-
ing the generated program to the actual task.

A 3d object can yield an infinite number of 2D appearances for a given sensor, resulting from changes in viewpoint.
But, for any given sensor, there are a finite number of qalitatively different chocteistic: appearances that can be
termed aspects. An input imae can be classified into an itmanc of am aspect based on the ranges of the feature val-
ues that differentiate between aspects; this procedure is called aspect clssification. Since aspects are essentially col-
lections of viewpoints, aspect classification is equivalen to rough localization. More accurate localization can be
performed by analyzing the shape change within an aspeM caled linear slupe change determinatio The localizaton
program generated by the system reflects the distinction between global and local shape changes by separating the
processing into stages of aspect classification and linear shape change determinatio

3.1 Explicit Object and Sensor Models

Computer vision systems can me many different types of sessa. A sensor can be considered to be a transducer that
transforms object features into image featurm, and different sensors yield differe image feature For example, a
laser range finder detects the range and orientation of object surfaces, while edge-bused binocular stereo yields the
range computed by triangulation on detected edges. "ihble I summarizes various sensors in terms of detectable object
features. A sensor model must specify the features detectable by the sorp

The list of features describes the qualitative characteristics of a ansor The quantitative characteistics are given by
the detectability and reliability of each feature. Detectability specifies the condition under which a given featur can
be detected. Reliability specifies the expected eM in the feature value. Both charcteristics depend on the configura-
tion of the object feature and the sensor.

The detectability of a feature by a given sensor depends on fctm such as rimage, relative attitude, reflectivity and so
on. In many applications, such as industrial wokstations, many of the factors can be fixed, and reative attitude
becomes the dominant factor. To consider relative attitude, fix the semor coordinate system, and consider the rela-
tionship of a feaure coordinate system with respect to it. The feamt coordinate system is defined such that the z-axis
is aligned with the surface normal; x and y axes aem assumed to be defined arbitrarly. There we three degrees of free-
dom in orientation of feature coordinates with respect to senso coordnae

Consider a solid unit sphere, called the oreiaion sphere, or o-spAmv, in which each relative orientation of the fea-.
tre coordinate system corresponds to a point. The direcon from the cnter of te sphert to the point defines the ori-
entation of the featu z-axis. Te rotmaio of featum coordinates aund ie z-xis corresponds to distanm bun the
spherical surface to the center of the sphere; a point on the unface represents a featm coordinate system obtained by
rotation around an axis perpendicular to the plane formed by the norh pole, the terw of the sphere, and the surface
point itself. The north pole is taken to be the case in which feature coordinates ad sensor coordinat are aligned.
One o-spher can be defined for each object feature, and is referred to as the feature configuraton space. Figure I
illustates th concept.
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Table 1: Summary o fSnsors

Samr Vertex Edge Face Active/
Passive

Edge detector line, passive

Shape-fzm-shading - r passive

Synthetic aperture radar point point/line point active

Tne-of-flight range finder - region active

Light-stripe range finder - rgion active

Binocular stereo line passive

Trinocular stereo line passive

Photometric semo - region active

Polarizetric light detector - point active

90-W z

(a) X Y

Figure 1: Feature configuration space.
(a) Relationship between sensor coordinates and feature coordinates. (b) Feature coordinates
as points on the o.sphere. Tbe bottom left drawing depicts the coordinates corresponding to
points on the surface of the o-sphere, while the bottom right drawing depicts the coordinates

along one axis of the o-spheme.

A sensor system consists of two components: an illuminant, uid a detector For a feature to be detected, it must be
visible to both components. For a given feature, a separate configuration space can be defined for each sensor compo-
nent. Within each configuration space, the configurations for which the feature is detectable can be easily defined by
geometric consuaints. For example, a plane is detectable by a conventional tv cane= if the surface normal of the
plane forms an obtuse angle with the camera line of sight. The detectability of a feature with respect to a given sensor
is then the intersection of the detectable regions of the configuration spaces of each of the sensor components. An
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example of the detectability computation for a liht-stripe range finder is shown zn Fqgur 2.

Figure 2: Detectability of a face for a light-stripe range finder. The detectable region is the
intersection of the detectability of the lutnuant and the detectability of the sensor.

For a given viewpoint. the appearance of an object with respect to a particular sensor can be defined by a list of the
detectable object features, along with the values of parameters extracted from those features. A viewpoint corre-
sponds to a single point in the configuration space of each feature of the object. A feature is detectable if and only if
the point representing the sensor viewpoint lies in the detectable region of the festiv configuration space, and if no
other part of the object occludes the feature. Thiese conditions can easily be checked using a geometric modeler. Fig-
ure 3 Ulusrates the process for a simple polyhedral object and a light-stripe range findet

(ab)

(a)

Figre3: se."Detcaiiycmtaaa

(C) ~ igr 3:pliatse of detectability constraints.Dectbefes



3.2 Predict and Analyze Appearances

The techniques prenemtI above make it possible to analytically determine the detectability of any feature from any
viewpoint. The combination of features, along with predicted feature values, defines the appearance of the object.
Next, the capability so predict appearanmces must be used to determine the aspects of the object.

For many feature sets, analytic approaches to determining the aspects of an object have been derived ([6], [181119D.
However, each approach is specialized for a specific feature set and a limited collection of surface types. An alterna-
tive approach, kmown as the ehautive approach, is to examine a representative set of viewpoints around the object;
this approach is independent of the feature set and surface type. As the sample set grows and the spacing between
samples decreases, the results from the exhaustive approach will agree arbitrarily closely with the analytic results.

The exhaustive approach is relatively easy to implement, especially for cases in which the distance between sensor
and object is assumed fixed. Then, all possible viewpoints can be represented as points on the surface of a sphere cen-
tered on the object. A tessellation of the sphere using a geodesic dome which divides the sphere into many small
spherical triangles yields a nearly uniform sampling of viewpoints. The triangles can be subdivided repeatedly to
yield any desired level of sampling resolution. At the center of each spherical triangle, the detectability of each fea-
ture can be computed as outlined above.

Aspects can be selected in many different ways, depending upon the features being consdered. For example, aspects
can be defined as collections of viewpoints for which the same set of features are visible. Alternatively, as used here,
aspects can be defined on the basis of detectable faces. Consider an object with N faces (planar or curved) SI,
S2,..,SN and define the face-label X - (XI, X2,.-,XN), where X, -= or 0 accrding to whether or not face Si is detect-
able. Viewpoints with identical face labels are grouped together into aspect For each aspect, a reprm tative attitde
is selected and used to calculate representative feature values. Each aspect can be caracterized by the feature values
of the representative attitude. Further, the ranges of feature values can be obtained by examining the range of values
of the features of each of the viewpoints constituting an aspect. Fqre 4 ilustrates the process of view generation and
aspect selection.

3.3 Generation of Recognition Strategy

The generation of a recognition strategy depends to some extent upon the senm used, or at least upon the feazures
used. In this section, results are presented for sensors which produce dense range maps.

3.3.1 Aspect Classification

Aspect classification is the process of classifying an input image into an instance of an aspect. Since an aspect repre-
sents a contiguous set of viewpoints, aspect classification is equivalent to rough localization. The parameters of object
pose determined through aspect classification also provide good starting panmeters for the stage of linear shape
change determination that follows.

One way of performing aspect classification is to extract feature values from the input image and compare this set of
values to the stored value ranges that characterize aspects. This approach may be very inefficient, however, since only
a few of the features may be needed to perform classification, yet ail we computed. A more cost-effective aproach is
to determine the compuittional eost of each feature, and then determine a dlaermmin g set of features that mini-
mizes the expected cost of classification.

A class~ication tree, or decision oe, is a aee in which each node represents a collection of classes and an associated
test, and arc& represent the possible results of a test. Leaf nodes represents the Arl results of classification. Using a
classification tree, a clasification is performed by traversing the tree fAm the root to a leaE A classificato tree pro-
vides a convenient frunework for optimizing the aspect classificatin proem , since using a classification tree permits
tests (and corresonding computations of feature values) to be performed sequentially.
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(aC)

(b)

z. - .

FIgure 4: Extractiof e aspects.
(a) Geometric model of am OoJect. (b) The GaOInla spher is Ihuhllaed 'at Sixty triangles to
represent viewpoints sampled. (c) Sixty computed apeaes Faces a umuinded with bold
lines are detectable by photometric stereo. (d) Eigh ampomea face to be wed for shape

labeling. (e) The five aspects obtained through clmollcalomby shape label. (I) Rpeettv
attitudes, ow ftr am* aspect

Aspect ciassifcation aree cun be used to optimize the claudlication VP Pc11 in dre folowig way. In the off-line stage

of processng, the entire set of possible aspect classificatio tame is examined 6y7 maiaiy an"d the minimum cost

classification ame is identified ad saved; dais t stare fern.I identfiers ad test values at eahnode.

A path from the root of a classifiation ume to a leaf reprems a cmplete caslficatiofl opezation. Computng the
cost of a single path is stxightfard. Each test nquire a fte. to be computed& uad each such computation incurs

a computatonal cost. Each node in die classification tine is anuied. die cast of computing the feature needed for the

corresponding test. The cost of a path is the sm of the coa of die kinmedit nodes.

A classificanon ame contain many paths from the root to the Weanodus, and difeent paths may be taken with differ-

ent frequencies. Therfore, the cost of a classification a=n is defined to be dos expected cas of a classificatiou; that is,

the average cost taken over ali possible inputs. The expected co ast be computed by weigtin the cast at each node

by the propotion of die sample population that will put dho -gh the node. Ila cost of every node in dhe tre is

summed and divided by the population Sim* so yield the overmi castRp Fi5e illusates tho method far computing the

cost of an individual classilfication uad the overall cast of a claslcation tree

Riding a minimum cont classification tree cmt be fanunalsd a a avueV hpsbe over aohrkind of mre called a

strategy tree. A strag tree for aspect classiication is a oin. wic each palth1m the t o a leafP rqxsutza
complete strategy for classification; that is. each path ina P -mS3wee. cut be oxpuuled into a classification tree.

Therefore, finding the least cast classification cmn is equivaln to finding the low cast path from ran to a leaf in the

strategy tree.

In a strategy tree, each node contains the mesuls of applying a WKtes n a gOve featwe, while amc represen the tests.

Each ac is labeled with the product of the cost of the femutrs and the exrpectedP nutube of SunpIes to whic h e test
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Figure 5: Cost computations
(a) Cost of classification (b) Expected cost of a classification tree

will be applied. An arc is present when a feature can be used to breakt up a set into smnafla~ sets At the leaf nodes, al
the constituent sets should be singletonis, unless the feature set is inapable of distinguishing some of the inpuz
classes.

illustrates a strategy tree for a simple case consisting of 4 classes, and 3 features. At die root, ali doe classes wre
grouped into a single set. An sic is present for every computable feature which ca reduce dhe set size, so there are
thme arcs at die root. The darkened path in the tree is the minimum cost path, and expands into the classification tre
shown in Figure 5.

There are cases for which is not possible, given the set of features, to distinguish two Classes.Iditnuhal
classes wre referred to as congriu clases, and die coiresponding nodes a con griwt nes. Since the classes in a
aspect classification tree represent aspects of some object. the existence of congruen classes means tdot the corre-
sponding aspects cannot be distiguished with the available featres such aspects wre refered to as congnra
aspects. Congruent aspects do not represent a failure of the search proedure, but rather indicate a fundamental lini-
tarion of the feature set. In many cases, the linea shape change determnation step crvrct for ambiguous aspect clas-
sification and demines the correct object pose.

3.3.2 Linear Shape Change Determnination

Me aspect classification step no"lt in t classification ofui input image a an instance of an aspect. Since sa aspect
ctuausts of a contiguous collection of views of an object, aspect classification is equivalent to rog localzation; the
possible collection of object poem me limited to thos conssen with the observed aspect.
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Figure 6: Strakag tree

The next step in dhe localization process determnines the exac pose, given die WInIta estimate obtained from aspect
classification. The same set of features is visible throughout an aspect, so no non-linear events such as the appearance
or disappearance of a feature occur. Therefore, dhe second step consists of determining the exact POWn within an
aspect, subject only to linear changes (rotauion and translation) of fe6, e this step in the localization proces is
known as linear shap change detenrnion (LSCD).

One way to perform LSCD is to utilize a moxdl-bsed IppoIc in whichi image fetue am matched to model fea-
tures a pose is hypothesized and used to predict locations of feauw iun the image, ad t pose is refined by comput-
ing the error in predictions and observations and updating the poes appopriffieiy. In most model-based systems, the
matching stage is very difficult. since ail possible rmches between image and model fesatures must be investigated.
Since aspect classification has been performed, however, the c orsspdence between some set of image and model
features has already been established. In particular, die asaumnps underlying the LSCD method Presented herm are

" the correspondences between MOde and image faces. ame known;

* the correspondences between model and image edgem Muaknown.

The aspect classification strategy presented in the previouse subsection was encoded in t form of a fti classifi-
catio tree Each leaf node of t tee represents an aspect or collection of congruent aspects, and for ecb leaf node a
different LSCD strategy may be appropriae. The VAC prsPnted bere a mpu-e a sepmn LSCI) strategy for each
leaf node of the aspect clasification trme The stop in each LSCD smaug am encoded as nodes that am attached to
t leaf nodes of the aspect classilication nee. Althoughi the puticular computatonal procedures vary between
aspects, the same steps am folowed in the same order for each spc

I. determine the coordinate systm of die primal face, (the visible face with die largest 3D area):

1. 1. determine the oignof the prinulface;

1.2. deterne t z-axis orientaion of t primael fkam



1.3. determine the x-axis oientation of the primal face;

2. estimate the body coordinate sysem

3. establish wcrres between image and model edges;

4. recover exact body coordinates by numerical minimization.

The LSCD strategy is determined off-line through the following stps:

1. For each aspect, the visible face with the largest 3D aea is selected as the prbnaifacr

2. Each primal face is analyzed, and a method for defining the face coolinm system is determined. Sp.-
rate nodes ar attached to the classification twee which dAe the eu procedt re ed in each individual
step of determining the oigin, z-is, and x-axis of the pimnal face.

3. Given the estimated coordinate system of the primal face and the r mation between primal face
coordinates and model coordinates, the body coordinate system can be estimated with respect to the sen-
sor coordinates. This is encoded as a separme node of the wee.

4. Knowing the object aspect and a rough estimate of the body comna system embles die pedjcton of
the location of model edges in the image. The predicted edges can then be matcd to observed edges.
This process is encoded as a separate node of the tee.

5. A fine-uming procedure is used to determine the exac body coordinates by adjusting the estimated body
coordinates so that image edges exactly match predicted model edge. An umact match is not possible so
the procedure finds the body coordinate tha minimizes the wror between imicted. and observed edge
locations. This procedure is encoded as a separate node of the wee.

3.3.3 The Interpretatho Tree

The overall strategy for object localiztio is encoded in the form of a e, thewp adon ee. The top part of fte
interpretation ree consists of the aspect classification wee, and consists of direcdas for a series of feattue value com-
putations and tests that result in the claification of an input image ino an i=U e of a sWc bottom p at of
the interpretation m is six nodes deep, and consists of the step in the LSCD snegy that apoprite for eh
aspe Figure? and Figure 8 WIusta the itetretaion wee for two objects: a my ca, and an L-shaped polyhedron,
respectively.

3.4 Run-time Execution

Each of the procedures represtied by a node of an intepreation t corresponds So en xecable Qe srd in a
progrm library. During the off-ine phae the creation of a node of the inmpmtion tree is accompaed by the
instantiation of an executable obect fr. the program library, and the insertion of the object at the node. During the
on-line phase, these inu ed objecs ae eecuted in order to perform object recognition. MsIg-Wpsing is used
for communication between objects

For eah executio of the object recognPOn sMWtg during the, on-line phome a preprcesd imape is ponsd to the
root of the imnerpudim um and the object -ired at the root is invoked. Ih mcudan of the root object results in
the computation of some famy, vaw md th application of a m. ThMe ouume of the ts nts in the po.
cessed imag being passed to the qqIIII node at thenxt Wel of tho e and the corrmfdg stored object is
invoked. TMe sequenceP ofm mesgj.m . wd object invocation; proeeds tdlafnodeasreached, indicating dtha
processing is complete.The rsidsof;,' prcsig u then pused backoptheusemmd Poine from the root-
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Ila~

(b)

(d)

ipre 7: Gemeratim of m object m the a toy ar.
(a) Object model. (b) Object aspect

(c) Aspect cldaum tree (d) CAopebIn i trpruadm true
At congruent nodes of the cai&Mi pot of die Moo, no unk m aspect is kdoudk lmad, smverl aIs ts we
detmnined to be possible. For eh compue mopeca. do LSCD put a the um is uwcd md the resif m uaned
a compamed by the conpuem node; the aspect yielding he minimm caw is selected a die r ir arpreuadon
md this nt is parsed c k up to te tm ot td amUee.
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(a)

(b)

(C)

Fig., 6M GnwM of a object rcgii sb*aeg fr m LA~qnd polyhedrom.
(a) Object modeL (b) Object aupecis

(e) Aspec fcuem tree. (d) Comiplet Iterprewaduintree.

3.5 Experiments

Ia ibis ucdaa, we iuMSMe the nocna of doe compiled strp. As sind previodny. di. VAC 1eu1med hem wascansbucad to uuilia m b d F n ~w do.. ime mae; ibm & th fuu .61- e d we dime ib cma be &w.ermindi gieM V" lope WON& ED~u Iniff to moew dit seow ofeeeec ofti VAC, die reslts we demmuad



using two different range sensors dual phoiomcui te (131, and a Erim la m anfine [111].

3.S.1 Dual Photometric Stereo: Toy Car

The complete inserpreunon tee for the toy car is preetd in Pigm? . The my cor was placed in a scene on top of a
pile of other objects The input car scene is shown in Fugow 9. hprqwcessing tngSw results in the computtion of:

0 A needle map containing the gradient space valves at mcli pxel.

* An edge map.

0 A label map indicating the region to which echb -k belongs.

The aspect classification step perfonmed ar ilhamind by di. black nodes shnu am i int herpowtion UMe of Fqiur
10. Starting below the node at which the aspect is identified, doe LSCD VmrP --*ug begis. Tbe firs node detrmines
the mass center of die twget region and declares doat position o be die origin of ft fe cr inate system. The net
node determines the averag suface oricnato of die to"u region mad decimes dom to be the orientation of the z-
axis of the primal face coordinat system

The next two nodes complete the determinaton of due Iht symm ad eindnsame ft bod cooidnate sys-
temn. Fgur 11 I sMoves the estimmtd body coadoiI omui on ft input image.

The next step in the piee. is the detemintion of the edge -~ ad fine-ofutn of do object pos. Pigm 12 ilium-
usses the results of these; pr-me

3.S.2 Erim Laser Range Finder L-Sbaped Polyhedron

The complet interpretation wee for do L-slmpe polyhed=e is prFe1ented in Figow 8. Me L-shqed polyheduen was
placed in a scene and an Brim image obIaine a d piusem-,I to do ro o hlu an tMLe The MOslW are pa.
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(a)

(b)

Figure 11~ Fbna deiudSh of object pos.
(a) Correspondences betweett model and imalle edges. (b) rhu! posen imilaid on Input scene.

4 A VAC Utilizing Image Synthesis for Prediction

The appearance-based system of Sato. etal 12D1 was bulk for doe p -lpwse of rocoizing spclrobjects. Specular
objects pose a special problem for copInr 1; O an.i Specubrities areulohmthdomor pibminn image features, and
yet contain no brightness variations which can be used for edge deseciom or 3D dne aualysis. Mdoreoer, seua
features may appear, disppear, or che uhape abrutl wih =all vuatitos in vlewpain T1e F P seFnce of a spe-
ulauizy require a precise configuton of ilhimamnv surface normal, and mnsor, ad therefore povide a powerfu
constraint on the underlying surface geomery. However, die cmaitis pm* lIcaland does little to constrain the
object pose.

Specular reflection a= found in newly every haging sceai. Meal Shut, plastc, and many other materials am
highily specular. In addition to optical images, there am other imaging syu dthate based on specular reflection.
For example, radar is bosed on specular reflection, as we auasomic ,inderwam imaging ad medical sonopuaphy.
Thereore, it is important to establish techniqe to recognize objects using spclrimages.

4.1 Explicit Object and Sensor Models

An analytic approch toaW aac-ae vision is impuactical in the domain of speula objecms Because of inter-
reflections between shiny mufaces, analytic preiction of speculnride. is amiely dlfflculL An alternative isthe use
of a sensor simulaur, which generates abject i apernes barned on both abject aid sensor model

Senr simulator wem very smilar to may FwP of rca am graphics. A 3D scen is described by a geometric mod-
eler. A sensor simuato n=~ the Path of ligh rays from pixels into the scene. Every dtie a Ma hits an object surface,
the ratios of refected and msanmtled enery an computed on the basis of the m 0u- -refetanc functioni ad coeffi-
cient of refraction, respectively. 1%e semmor smulator then trcs both the reflecled and refractd rays. When a ray
reaches a light sourme the energ emitted by the samw= is specified by the summer model. 7Ue incident energies of all
the rays towards a pidxelm summed to determine the brighm.s value at tho -b and therfor pedict the object
appearace at the pixel.
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extracted by t simple procedur of binary thresholing. Some specularte esier to detect tha others, how-
ever. In generAl, the sin of a featue deterinines the eme with which iteca be detected. For example, elongated spec-
ularites on a cylindrical surface are easy to detect, while a spiecular spot on a small sphere is difficult to detct Thus,
the detectability of a specular feature is related to the 3D shape of tie surface underlying die feature.

While a specular featu= might be easily detectd, it could be quite unseable dhat is, the specularity might be visible
only over a small range of viewpoints. and a slight change in viewpoint could camn it to dlsappeaL Such specularities
are termed wwable anid are poor choices for use in recognition. The stability of a specular feature is related to the
size of the collection of viewpoints fron which t feature eaon be detected.

To make the concept of stability mom clear. cmdra co-locatd camer and light soure. Specular reflections arm
detectable when the object surfaces am nearly perpendicular to the cae line--ght. Consider the motion of the
camnera/light system around the surface of a sphere centerd on an object. with the line of sight always toward the
center of the sphere. If a small specular sphere is being imaged, a specula spot will be observed, and will continue to
be observed for all viewpoints; henc= the spiecularity wrising from a spherical surface is extremey stable. Now con-
sider a cube being imaged. Each plawa surface only yields a specularity when the line of sight is perpendicular to the
surface, and the specularity disappears for smail chages in viewpoint hence specularities haom plawa surfaces are
unstable. The area on the viewing sphere corresponding to detectable viewpoints is a measur of stability of a specu-
lar featur.

Figure 14 illustrates the detectability and stability for specular feswu over four differenit surface types planar, cylin-
drical, conical, and elliptical. As emn be seen in die figure, pkua surfaces have easily detectable specularizies that am
low in stability, while spherical surfaces have low detectability but high stability. Cylindrical and conical surfaces fall
somewhere in between.

n ~ V

PmA

Figure 14: Detetability aud sablit of specula features

4.2 Predict and Analyze Appearances

The systemi employs an exhaustie method for appearance anualysis. Using a senior simaor, the system generats
synthetic images for a representaive collection of viewpoints obtained by tessellating the unit sphere The viewpoints
we then grouped into aset n the beau of sinilar feaw= amts

Assuming that range to te object is consamnt all poedief viswing dircion em be repreenoted as paints on the unit
sphere. A geodesic pmmito of the viewing spher uniformly tMo es the au int saal Mranles. The center of
each riangle is chosen1 to e; Puent a viewuang direction. Triangle Can be fut0 d- dIvided11 1 into smnaller triangles to
make the sampling as fin as deie.The snr shaowr is thee twed to generm synthetic inages at each repeen-
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taive viewpoint. Figure 15 shows some of the appea ce geners atefor a simple object.

(a) (b)i

Fignre 13: Specowr boa s of a simpe objec.
(a) Object. (b) Synthekized sample images.

Each image is processed to exuact speculardes, and the daa structure created by eo senser simulat is used to
datenine the primitive component underlying each specuauity. For N primitiv coponents P1. P2 -. Pk aCCUl
label can be defined as an N-tuile (XI, X2,..., XN) such tdt Xi = Ior 0 according to whether or not component Pi
gives rise to a detectable specularity at the viewpoint represented by the cell. Cells with identical cell labels ae
grouped togeder to form aspec Thus, in the case of specular objecta, pets we defined with respect to detectable
specularities. Geometrically the process cm be considered as follows. For each primitive component, a geodesic
dome is constructed in which each cell is labeled according to whedr the component gives rise to a specularty from
that viewpoint. The geodesic domes for each component me then inrsected, md each distinct region corresponds to
an aspect. Figure 16 illustats the selectio of aspect

P-1 t-2

Pn-1 2P t.3

Pan.1 &2&3 W

Figure 16: Aspect selection for the shmple object

4.3 Generate Recognition Strategy

As dic, d sbove, specue fatves can viy in their chaceitcs of dtctbiy and stbilit. For the purposes
of object recogniton. it sytm son specidar feues on t beds of dewmthity ad stability in ofe to select the
mom effecu"v famme for asect chocmiiaon.
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Detectability was defined above as die meaunre of the ae with which a specularity can be detected, and was related
to the area of the specularity. The system uses as a messure of detectability the numbe of pixels of the largest appr-
ance of a specularity, normalized by dividing by he area of the largest detect speculaity.

Stability was defined as the area of the viewing sphere over which a given specularity is detected. In the cas of a tes-
sellated viewing sphere, this measure can be approximated by counting the number of cells within which the specu-
larity is detectd, normalized by the total number of cells.

An evaluation function is required to combine the measures of detectabil4 and stability into a measure of overall
feature utility. For each aspect, the features are ordered by decreasing utility. At run-time, matches are made in order
of decreasing utility.

Aspect classification is equivalent to rough localization. Finer localization is difficult in the cas of specular
because specular features change their shape drastically with mall changes in viewpoint. Moreover, the exhaustive
approach used in aspect determination may miss an unstable specularity that is only visible between two cells. Conse-
quently, deformable template matching was selected as the procedure for fine localization.

Deformable templaie matching permits the template to deform aecording to cesin constraints. An appearance is
described as a combination of templates, each of which describes a specularity. The templates am interconnected con-
cepuaully by springs. The quality of match is measured by the sum of the internal deformation energy of the springs,
and the external energy needed to fit each template to a real specularity. Thus, a deformable template can deform to
find a match, even when a speculaity changes shape or position. foeover, matches cmn still be made even in the
presence of accidental Mearances or missing features.

A deformable template is prepared for each aspect using the appearace which is located at the center of the aspecL
Speculanties appear as spots or line segments, so each template consists of spots mad line segments Specular features
are extracted fomn the central appearance. For an elongated featre,, a line is fit to the feamr and used to represent it
in the templat. For a spot feature, a point located at the cener of the feature, is used to represent the feature in the
template. A conceptual spring is located at each endpoint ota line featme, and at the point representing a spot feature.
The spring energy is calculated from the displacement between the original and cmut location of the spring. Thus,
the energy of a spot feature is a function of the displacement between the current and original position. For a line fea-
ture, the energy is a function of the displacement energy of the two endpoints.

4.4 Run-time Execution

Run-time execution is broken into two distinct stge aspect classification and verification. In contrast to the system
discussed in section 3, aspect classification does not uniquely classify a input image as an instance of an aspect.
Rather, aspect classification is used to eliminate impossible aspects Remaining aspects me input into the next stage,
in which deformable template matching is used for verificaton

4.4.1 Aspect Classification

Specular features con be very unstable. Small changes in viewpoint may came a givm specularity to I; diup.
pear, or change shape. Conqum , it is difficult to identify a single speculaity, or the set of speculities that define
an aspect, with complete confidence, Therefa rther than employ a binary dafication of an input ima as an
instance of an aspect, the run-time aqxe classiication system employs a contious clssifcation method based on
the Dempster-Shafer methodology [211. Fgu 17 Mislhua th c latdm mehod. For simplicity, the ilsto
is limited to aspects lying on a single Vnat cte ofthe viewing sphe. Each mach with a mplate fm a single fe
tam generses a likelihood disUutiM In which a value C o I mens tiat ft crmrponding aspect is ver likely.
Likelihood disurIbutions from sepa1at festnme m ged agt De wr-b theory. As shown in the figure,
each additional fete aucus the -b1r of Mly aspemts and inpen the pes th o rnaining ones. Te M .li
hood values for impossible pectsder- with each additiomin femue, while the ielihood values of posible
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aspects incease. After evey the evidence from every avalable fem hs bew applied, the overall likelihood disri-
bution may still contain several peaks. each of which represents a posil aspect classification for the input image.

Pan tempat. V Tb~ A

Figure 17: Aspect classification based m evidential reasoning

4.4.2 Verification

The verification process determines the correct aspect by matching the input image to the complete template for each
of the possible aspects. Each template can move over the entire image to r-rcrnue the total energy. The total energy
is comprised of a weighted sum of consuaint energy, and potential enerWj:

Etatd = W mona im E OWS, . + W pu Po a Epotm;,

Potential energy represents the energy of the position of the template, while constraint energy represents the energy of
the relations between templae components. Potential energy is readily visualized as the height of the template in a
potential field defined by the detected specularities in the image. Consuaint energy is modeled by springs connecting
the template points to image feature points; as the template defoams, the springs stretch and the constraint energy
increases. Figure 18 illustrates template matching.

An optimization procedure is used to find the energy minimum. lb avoid getting trapped in local minima, some noise
is added to the total energy. The global minimum energy for each template specifies the quality of fit of the input
image to the template. The best match is chosen by comparing the minimum energies for each of the candidate
aspects.

4.5 Experiments

In this section, the VAC for specular object recognition is applied to two different kinds of specular images: real opti-
cal specular images, ad synthesized synthetic aperture radar (SAR) images.

4.5.1 Real Optical Images

For this experiment, a ral toy airplane was constructed. The sensor used was a tv cama with a co-located light
aomuce. The sensor parmeters were obtained by calibration. Figure 19 shows a zed specul image of the toy air-

The object was modeled using the Vbm geometric modeler C2]. Object aspects were determined using the exhaus-
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Figure 18: Deformable template matchinmg.
(a) Teuuplate. (b) Potential energy. (c Cairaint eneg.

Figure1:Reapear Ismattoy afrplaue.

Live method. Since am-made objects such as the airplane have only a few stable posev, an aspect map over the entire
viewing sphere was not generated. Instead, only the awmcsof ado aiplane; frm the equator of the viewing
sphere were considered. Sample images were geneated on the equator at So increments for a total of 72 samples.
Appearances were generated using a sensor simulator [8]. Figure 20 illumtrates the object model and some sample
appearances.

Tie concentric arcs in Figure 21 Correspond to the visibility amap for each primitive surfce.h Te outermost arc cor-
responds to the detectble directions of the rear fuwelge Mhe ac bs unbroken - dhe part can be observed buvn all
viewing directions. The topleft image in shows the set of possible appearances of specula femate arising from the
rear fuselage assa function of viewing direction. Mhe other inages conuspouad to other arcs of the visibility map. Some
of the arcs an the map are brtken; the missing at repass correspond to viewpoints fom which the primitive surface
is not visible. The figure shows the featmm in thei computed order of significance.
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(a) (b)

Figure 20: Model airplane and predicted speculair appearance..
(a) Airplane model. (b) Saumple appearance.

Rewhamq Frma Wun 1 hifwing

OEu.
4Mi: Sih am:
RWgt Talon RMt@IPW

(a) (b)

Figure 21: Visibility and significance of reatom In optical experhmnut
(a) Visibility miap. (b) Specular Ieanuies In order of siniicace

To test the resulting recognition program, a ral specular impg of the toy airplane was obtained and input to the sys-
tem. The first step in dhe recognition p r ces is aspect clasicasiou, in which possibile aspects are searched by match-
msg with partial templates. fligure 22 Shows dhe input imag ad th e sults of matching to t firstthrce partial
templates. The figure clearly shows the mnrowing of the liilhod distribution as atiditionol matching is perfonned.
The result of the aspect classiflcamse was the selection otaspect at 45%, 115%, 123, 165%, and IV0.

Foilowing aspect classification. vaificasim we. parined sing dtiarumbl templat matchiing. Fgur 23 illusarates
die verification step. One tmplate was sed for each of the asecs eected. In each cmw the template change its
shape to match die specularises in 1he input imid can Pele d lo the shapes dhown by the white lines superimi-
posed on the copies of the real image in the figure The minilom m. anmd hence the best match, was obtined for
the aspetat 170.
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(a) (b) (C)

Figure 22: Asp c dflcation stage for optical experhaeuL
(a) Input optical bmage (b) Accumulatiem of eviiience (c) Airplanme pas.

Ted a tCaias

Result

Figure 23: Verification stope for optical bage.

4.5.2 Synthetic Aperture Radar Image

Syntheuc apermr adar (SAR) is a flyal rada rsystm that is often used an sizuaft or satellts SAR cmn Pxou
very high-resoutin two-dzunsiumal unages mid can demac detais of imuern especially artificial strctues SAR
images are based ea specular mections of radar waves, so image feature i SAt an similar to spclrfeaue in
optical image. in specific. doe fatres se very senitve to chang in object orlmnaton chang sdape ablipty, and
arppe or disappear suddenly.

mmi expeimn was perfoimod usig syndheic data only. A SAR simulao (SAISM", developd by TASC [3], was
umed to geneate syntheti SAR imames Tie simulawo cimmd not only brihtem images. but also attrbuemae
which secifed th part of t object which caised ech radar feaft.'
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An apltam model a umd for the obect model ab- wa dma w o im ad in *a. atical experkwa, but
somewhat ma e complex. The " put fu m a SAR amr im a p dwa vimw. By amog hot an aisphm. is paked
on ft ground. a wa only uemmy to conhider ft poewb qyinmcincms ae IIIm 1anuu m ding to various
routaons about a an pers ndicular to IM S 1 adI Ocche m . Yn mat P m.'A. tP Vlewin dkcwd wM am-
pled every tO". Figm 24 slms h airlM w model ad do us* gpp c

(a) (b)
Pigw. 24: Airplan .. dal mad jme SAR Image.

(a) Airplane modeL (b) SAR image. dk1.d by sARs~oL

Aspects were detarmined using famn visity. Figm 25 Mma ft viWbft map far d aple Coricwtrc
am.s coespond to the deectable dizecons of ech pat miing = puce bdka dbc a m which the pa Is
not visible. The detectability and stbili of each feature ww evalaed from do simulaed ias, and the feature
were sorted in order of significuuce TIe righ side of dom figum dow -ue dopMI of each fAtur= the featume
are numbered in order of significance.

40 WC~ Eu.
Fnrwfwb Rtwq t mw~

(a) (b)

Figrm 2& Vblmly imd lSmme 1 I le SAl expmmL
(a) Vblt m amp. (b) SAR feWa w Is wd. atdm m=a
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Mahing tumnl w eermed beued on the predictedla . Bub mm ce.ined otacollecta z ofright
lines aid bright spoa. Since an values can be detmmied fion SAR onsnes it un possible to notmalize the size
of ainaa. HceM, --shM -in object sin was not considen.

A test ima oh shopme was genersad using SARSIM. The firs stapgo dot rmk-tme; or I' was ect clasuifi-
cato. which reduced the nomber of p s ects by nuaching with pm aemplases. Fgur 26 ilhl tei
aspect dlawficauan process. The &Urs match mullaed in a hued wlialood distribution. After atching toting all sax
effective festures, a natowe dstribuldm was obtained. which refhcel the number of possible drections to five.

(b) (C)

Figure 26: Aspect claulcatin stge fr SAR ezperfme
(a) Input SAR Image. (b) Accumulated Ekeihood dlstrlbuem. (e) Abaft part.

Thle second stg of the run-ime parce.s wa verificatim in which defornuble temples we matched to esch of
the candidate spects. Figure 27 ilums de verification puce. The upper e imsgs in the figure m copies of
the input image. The superimposed whit figus show the defbrned tomplae a th mnimum enagy levels. The
least energy of the fin temiplew was obuined for de tapie at 30". The result is shown in the Iowa image of the
figure, with the outine of the aizoaft superimposed over the rignl image.

ciassficas

Tmiaeng Carnidtsmatching

Figrm 27: Vericlado. sue for SA experimemt.
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5 Summary

In th" p g er. we prsentd the pfrdigii of aqp Peuce-ad vision, which i a paradigm for building object recopi-
don system Mwe pared is called q PWeaurcPbuedSn ahn -integrul amp is doe predton and muayis of object
appearulces. An app uuc-bmed systm is cald avisionalgoddumcompiuor VAC. lbsinput o aVACas aM
of objec and senmo models, and fhe output iss.' executable object recognition program.

Appearance-besed system share fer principle defning chUisdOn'cs:

" twoostage Prm
A VAC operates in two distinct stages. Mwe Am stageis performned off-Unia, and consists of the analysis of
appearances and tie generation of an object aecogniton Iroamn The second stag is performed on-line,
and consists of the execution of the previously geneaesljVxup-n

* explicit object and! sensor models
A VAC embodies an overall approach to object recognition that can be qqpie to a variety of objects and
sensors Therefore, explicit and exchangeable models awe utilized. Sensor models specifies: the features
detectable by die senso, along with procedures to canmpsin thde detectability mnd reliability of each feature
Object models include geometric mnd photometric prope ties of the objects.

" appearance prediction and analysis
Objects are recognized, based on tbek apperanes in. inuges. Tbemfore, the prediction and analysis of
appearuc is fundamental, to generating competent object recognition proms. A VAC predicts appea-
ances. based on the information in object and sensor models. The samp of appearanes; may be determed
analytically or exhaustively, mnd the apImne my be predicted analytically or through image synthe-
sis.

" miraegy gnrto
Each VAC may embody a different appoac to object recognidon For exuiqiea, Me JIrs VAC presented
piocessd range data mnd performed fin pose doo.o sing minimization of edge location erws.
The second VAC p rcs sPecul images usd paroed. pan F darIn Ingf deformable, tem-
plates. However the output of a VAC iss.' execable, pgn for object recognition. Tyically. the out-
put program is optimized during the off-tie stqe the aprttimio costs = paid beck by cost-efficient
execution of the on-line stage.

T'he history of computer vision PeseuP i ba consisted lagely of PremIh devoted to maigvision systems work. As
a result, powerful new methds have been developed and the vislm systms of today we much more powerfu mad
competent tha those of the put. However, vision system of today am no earner or ceprto build thm. sysms in
thie past. As a result, compuser vision is not a widely applied as on might expect, due to the cost of systems.

Appearance-based vAsion prorvides one aproach to maig viso systms -cout-effiectve by providing a mean
of automatically generating object recognition system. Rathe dm rIrn time and effort from highly trained
individuals, a VAC can gemeim. a coptncoaaffctivoe object recophiion prgmm given only object and sensor
models. The example VACs prste in this papa dunomud, both the effectiveoem mnd the flexibility of appea-
sane-based vision.
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